

Systematic Study of Decryption and Re-Encryption Leakage: the Case of Kyber

Melissa Azouaoui, Olivier Bronchain, Clément Hoffmann, Yulia Kuzovkova, Tobias Schneider, François-Xavier Standaert

12 April 2022
\square UCLouvain

Content

Introduction

Modeling Security

Modeling Performance
Trends in Perf. vs. Security
Take Home Message

Why Post-Quantum Cryptography (PQC) \& SCA ?

[^0]
Why Post-Quantum Cryptography (PQC) \& SCA ?

- Will be soon standardized:
- NIST Standardization effort.
- ANSSI targets around 2030 for PQ standalone solutions. ${ }^{1}$

[^1]
Why Post-Quantum Cryptography (PQC) \& SCA ?

- Will be soon standardized:
- NIST Standardization effort.
- ANSSI targets around 2030 for PQ standalone solutions. ${ }^{1}$
- SCA is a threat to most embedded systems with cryptography:
- Symmetric cryptography: block-ciphers.
- Asymmetric cryptography: RSA \& ECC.

[^2]
Why Post-Quantum Cryptography (PQC) \& SCA ?

- Will be soon standardized:
- NIST Standardization effort.
- ANSSI targets around 2030 for PQ standalone solutions. ${ }^{1}$
- SCA is a threat to most embedded systems with cryptography:
- Symmetric cryptography: block-ciphers.
- Asymmetric cryptography: RSA \& ECC.
- Powerful side-channel attacks against PQ KEM's:
- Many single-trace attacks.

[^3]
Why Post-Quantum Cryptography (PQC) \& SCA ?

- Will be soon standardized:
- NIST Standardization effort.
- ANSSI targets around 2030 for PQ standalone solutions. ${ }^{1}$
- SCA is a threat to most embedded systems with cryptography:
- Symmetric cryptography: block-ciphers.
- Asymmetric cryptography: RSA \& ECC.
- Powerful side-channel attacks against PQ KEM's:
- Many single-trace attacks.
- PQC is expensive on Cortex-M4:
- $\approx 800 \mathrm{kCycles}$ for unprotected Saber.
- $\approx 13,000 \mathrm{kCycles}$ for 4 -share Saber.

[^4]
What is a Key Encapsulation Mechanism (KEM) ?

Goal:	Alice
How:	

What is a Key Encapsulation Mechanism (KEM) ?

Goal:

- Alice transfers a symmetric key (m) to Bob. How:

$$
\begin{array}{cc}
\text { Alice } & \text { Bob } \\
m \leftarrow\{0,1\}^{n} &
\end{array}
$$

Security property:

What is a Key Encapsulation Mechanism (KEM) ?

Goal:

- Alice transfers a symmetric key (m) to Bob. How:

1. Alice "Encapsulates" the secret m with $p k$.

Security property:

Alice
Bob

$$
\begin{gathered}
m \leftarrow\{0,1\}^{n} \\
c \leftarrow E \operatorname{EcaP_{pk}(m)}
\end{gathered}
$$

What is a Key Encapsulation Mechanism (KEM) ?

Goal:

- Alice transfers a symmetric key (m) to Bob. How:

1. Alice "Encapsulates" the secret m with $p k$.
2. Alice sends $c=E n c a p_{p k}(m)$.

Alice	
$m \leftarrow\{0,1\}^{n}$	
$c \leftarrow E n c a p p k(m)$	c

Security property:

What is a Key Encapsulation Mechanism (KEM) ?

Goal:

- Alice transfers a symmetric key (m) to Bob. How:

1. Alice "Encapsulates" the secret m with $p k$.
2. Alice sends $c=E n c a p_{p k}(m)$.
3. Bob Decapsulates $m=\operatorname{Decap}_{s k}(c)$.

$$
\begin{array}{ccc}
\text { Alice } & \text { Bob } \\
m \leftarrow\{0,1\}^{n} & & \\
c \leftarrow E n c a p_{p k}(m) & c & \\
& m \leftarrow \text { Decap }_{\text {sk }}(c)
\end{array}
$$

Security property:

What is a Key Encapsulation Mechanism (KEM) ?

Goal:

- Alice transfers a symmetric key (m) to Bob. How:

1. Alice "Encapsulates" the secret m with $p k$.
2. Alice sends $c=\operatorname{Encap}_{p k}(m)$.
3. Bob Decapsulates $m=\operatorname{Decap}_{s k}(c)$.
4. Alice and Bob are sharing a secret m. Security property:

$$
\begin{aligned}
& \text { Alice } \\
& \text { Bob } \\
& m \leftarrow\{0,1\}^{n} \\
& c \leftarrow E n c a p_{p k}(m) \\
& m \leftarrow \operatorname{Decap}_{s k}(c) \\
& A E S_{m}(\cdot)
\end{aligned}
$$

What is a Key Encapsulation Mechanism (KEM) ?

Goal:

- Alice transfers a symmetric key (m) to Bob. How:

1. Alice "Encapsulates" the secret m with $p k$.
2. Alice sends $c=\operatorname{Encap}_{p k}(m)$.
3. Bob Decapsulates $m=\operatorname{Decap}_{s k}(c)$.
4. Alice and Bob are sharing a secret m.

Security property:

- CCA-secure: Sending invalid c^{\prime} does not reveal information on sk.

> Alice Bob

$$
\begin{gathered}
m \leftarrow\{0,1\}^{n} \\
c \leftarrow E n c a P_{p k}(m)
\end{gathered}
$$

$$
m \leftarrow \operatorname{Decap}_{s k}(c)
$$

\square

Eve
\qquad

What is a Key Encapsulation Mechanism (KEM) ?

Goal:

- Alice transfers a symmetric key (m) to Bob. How:

1. Alice "Encapsulates" the secret m with $p k$.
2. Alice sends $c=\operatorname{Encap}_{p k}(m)$.
3. Bob Decapsulates $m=\operatorname{Decap}_{s k}(c)$.
4. Alice and Bob are sharing a secret m.

Security property:

- CCA-secure: Sending invalid c^{\prime} does not reveal information on sk.

$$
\begin{aligned}
& \text { Alice Bob } \\
& m \leftarrow\{0,1\}^{n} \\
& c \leftarrow E n c a p_{p k}(m) \\
& \text { Bob } \\
& m \leftarrow \operatorname{Decap}_{\text {sk }}(c)
\end{aligned}
$$

Eve
\qquad
\rightarrow We focus on the Decapsulation.

Example of (simplified) CPA lattice-based PKE.

Why a toy example of CPA-secure public key scheme?:

Our simplified CPAPKE. Dec $_{s k}(c)$:

Example of (simplified) CPA lattice-based PKE.

Why a toy example of CPA-secure public key scheme?:

- Building block for CCA-secure KEMs.
- Will be used to illustrate various attacks.
$m^{\prime}=\quad(\quad) \mid$ Our simplified CPAPKE.Dec ${ }_{s k}(c)$:

Example of (simplified) CPA lattice-based PKE.

Why a toy example of CPA-secure public key scheme?:

- Building block for CCA-secure KEMs.
- Will be used to illustrate various attacks.

$$
m^{\prime}=
$$

$\underbrace{\left[\begin{array}{l}s k_{0} \\ s k_{1} \\ s k_{2} \\ s k_{3}\end{array}\right]}_{s e c r e t})$

Our simplified CPAPKE. Dec $_{s k}(c)$:

- Secret key $\boldsymbol{s k}$ is a vector.

Example of (simplified) CPA lattice-based PKE.

Why a toy example of CPA-secure public key scheme?:

- Building block for CCA-secure KEMs.
- Will be used to illustrate various attacks.

$$
m^{\prime}=\underbrace{\left(\left[\begin{array}{llll}
c_{0} & c_{1} & c_{2} & c_{3}
\end{array}\right]\right.}_{\text {ciphertext }} \underbrace{\left[\begin{array}{l}
s k_{0} \\
s k_{1} \\
s k_{2} \\
s k_{3}
\end{array}\right]}_{\text {secret key }}) \quad \begin{gathered}
\text { Our simplified CPAPKE.Dec }{ }_{s k}(c): \\
\text { - Secret key } \boldsymbol{s k} \text { is a vector. } \\
\text { - Ciphertext } \boldsymbol{c} \text { is a vector. }
\end{gathered}
$$

Example of (simplified) CPA lattice-based PKE.

Why a toy example of CPA-secure public key scheme?:

- Building block for CCA-secure KEMs.
- Will be used to illustrate various attacks.

$$
\begin{aligned}
m^{\prime} & =M S B(\left[\begin{array}{llll}
c_{0} & c_{1} & c_{2} & c_{3}
\end{array}\right] \underbrace{\left[\begin{array}{c}
s k_{0} \\
s k_{1} \\
s k_{2} \\
s k_{3}
\end{array}\right]}_{\text {ciphertext }}) \quad \underbrace{}_{\text {secret key }} \quad \begin{array}{c}
\text { Our simplified CPAPKE.Dec }{ }_{s k}(c): \\
\text { Secret key } \boldsymbol{s k} \text { is a vector. } \\
\text { - Ciphertext } \boldsymbol{c} \text { is a vector. } \\
\text { - The exchanged secret } m^{\prime} \text { is a bit. }
\end{array} \\
& =\{0,1\}
\end{aligned}
$$

Build a CCA KEM from CPA PKE

CCAKEM.Dec

Build a CCA KEM from CPA PKE

With a CPA PKE:

- In CCA context, Eve generates invalid c and observes m^{\prime}.

Build a CCA KEM from CPA PKE

With a CPA PKE:

- In CCA context, Eve generates invalid c and observes m^{\prime}.
- \rightarrow Insecure since only CPA-secure.

Build a CCA KEM from CPA PKE: FO-transform

Fujisaki-Okamoto (FO) transform:

- Leverage PKE CPA-secure scheme.

With a CPA PKE:

- In CCA context, Eve generates invalid c and observes m^{\prime}.
- \rightarrow Insecure since only CPA-secure.

CCAKEM.Dec

Build a CCA KEM from CPA PKE: FO-transform

Fujisaki-Okamoto (FO) transform:

- Leverage PKE CPA-secure scheme.
- Re-encrypt m^{\prime} with $s k$ to obtain c^{\prime}.
- Secret is returned only if $c==c^{\prime}$.

With a CPA PKE:

- In CCA context, Eve generates invalid c and observes m^{\prime}.
- \rightarrow Insecure since only CPA-secure.

CCAKEM.Dec

Build a CCA KEM from CPA PKE: FO-transform

Fujisaki-Okamoto (FO) transform:

- Leverage PKE CPA-secure scheme.
- Re-encrypt m^{\prime} with $s k$ to obtain c^{\prime}.
- Secret is returned only if $c==c^{\prime}$.

Side-channel attacks:

1. $\mathcal{A}_{\mathrm{DEC}}^{\text {sk }}$: classical DPA.

With a CPA PKE:

- In CCA context, Eve generates invalid c and observes m^{\prime}.
- \rightarrow Insecure since only CPA-secure.

CCAKEM.Dec

Build a CCA KEM from CPA PKE: FO-transform

Fujisaki-Okamoto (FO) transform:

- Leverage PKE CPA-secure scheme.
- Re-encrypt m^{\prime} with $s k$ to obtain c^{\prime}.
- Secret is returned only if $c==c^{\prime}$.

Side-channel attacks:

1. $\mathcal{A}_{\mathrm{DEC}}^{\text {sk }}$: classical DPA.
2. $\mathcal{A}_{\text {ENC }}^{\text {sk }}$: exploits leakeage in re-encryption.

With a CPA PKE:

- In CCA context, Eve generates invalid c and observes m^{\prime}.
- \rightarrow Insecure since only CPA-secure.

What are the potential side-channel attacks ? $\mathcal{A}_{\text {DEC }}^{\text {sk }}$

$$
m^{\prime}=M S B(
$$

Standard DPA against sk:

What are the potential side-channel attacks ? $\mathcal{A}_{\text {DEC }}^{\text {sk }}$

$$
m^{\prime}=\operatorname{MSB}(\underbrace{\left[\begin{array}{llll}
c_{0} & c_{1} & c_{2} & c_{3}
\end{array}\right]}_{\text {ciphertext }} \underbrace{\left[\begin{array}{l}
s k_{0} \\
s k_{1} \\
s k_{2} \\
s k_{3}
\end{array}\right]}_{\text {secret key }})
$$

Standard DPA against sk:
1. Random (valid) ciphertext \boldsymbol{c}.

What are the potential side-channel attacks? $\mathcal{A}_{\text {DEC }}^{\text {sk }}$

$m^{\prime}=\operatorname{MSB}(\underbrace{\left[\begin{array}{llll}c_{0} & c_{1} & c_{2} & c_{3}\end{array}\right]}_{\text {ciphertext }} \underbrace{\left[\begin{array}{l}s k_{0} \\ s k_{1} \\ s k_{2} \\ s k_{3}\end{array}\right]}_{\text {secret key }})$

CPAPKE.Dec has to compute:
$c_{0} \cdot s k_{0}$
$c_{1} \cdot s k_{1}$
$c_{2} \cdot s k_{2}$
$c_{3} \cdot s k_{3}$

Standard DPA against sk:

1. Random (valid) ciphertext \boldsymbol{c}.

What are the potential side-channel attacks ? $\mathcal{A}_{\text {DEC }}^{\text {sk }}$

CPAPKE.Dec has to compute:
$c_{0} \cdot s k_{0}$
$c_{1} \cdot s k_{1}$
$c_{2} \cdot s k_{2}$
$c_{3} \cdot s k_{3}$

Standard DPA against sk:

1. Random (valid) ciphertext \boldsymbol{c}.
2. Collect leakage L on $u_{i} \cdot s k_{i}$.

What are the potential side-channel attacks ? $\mathcal{A}_{\text {DEC }}^{\text {sk }}$

CPAPKE.Dec has to compute: $c_{0} \cdot s k_{0} \sim \sim$ Info. on $s k_{0}$ $c_{1} \cdot s k_{1} \sim$ Info. on $s k_{1}$ $c_{2} \cdot s k_{2} \sim$ Info. on $s k_{2}$ $c_{3} \cdot s_{3} \sim \sim \sim$ Info. on $s k_{3}$

Standard DPA against sk:

1. Random (valid) ciphertext \boldsymbol{c}.
2. Collect leakage L on $u_{i} \cdot s k_{i}$.
3. Update guess on $s k_{i}$.

What are the potential side-channel attacks? $\mathcal{A}_{\mathrm{DEC}}^{\text {sk }}$

CPAPKE.Dec has to compute: $c_{0} \cdot s k_{0} \sim \sim$ Info. on $s k_{0}$ $c_{1} \cdot s k_{1} \sim$ Info. on $s k_{1}$ $c_{2} \cdot s k_{2} \sim$ Info. on $s k_{2}$ $c_{3} \cdot s_{3} \sim \sim \sim$ Info. on s_{3}

Standard DPA against sk:

1. Random (valid) ciphertext \boldsymbol{c}.
2. Collect leakage L on $u_{i} \cdot s k_{i}$.
3. Update guess on $s k_{i}$.
4. Repeat to improve guess on $s k_{i}$.

What are the potential side-channel attacks ? $\mathcal{A}_{\text {DEC }}^{\text {sk }}$

$m^{\prime}=\operatorname{MSB}(\underbrace{\left[\begin{array}{llll}c_{0} & c_{1} & c_{2} & c_{3}\end{array}\right]}_{\text {ciphertext }} \underbrace{\left[\begin{array}{l}s k_{0} \\ s k_{1} \\ s k_{2} \\ s k_{3}\end{array}\right]}_{\text {secret key }})$

CPAPKE.Dec has to compute: $c_{0} \cdot s k_{0} \sim \sim$ Info. on $s k_{0}$ $c_{1} \cdot s k_{1} \sim$ Info. on $s k_{1}$ $c_{2} \cdot s k_{2} \sim$ Info. on $s k_{2}$ $c_{3} \cdot s k_{3} \sim \sim$ Info. on $s k_{3}$

Standard DPA against sk:

1. Random (valid) ciphertext \boldsymbol{c}.
2. Collect leakage L on $u_{i} \cdot s k_{i}$.
3. Update guess on $s k_{i}$.
4. Repeat to improve guess on $s k_{i}$.
\rightarrow One pair (c, L) improves guess on all $s k_{i}$.

What are the potential side-channel attacks ? $\mathcal{A}_{\text {ENC }}^{\text {sk }}$

$$
m^{\prime}=M S B(
$$

Recent SPA against $s k$:

What are the potential side-channel attacks ? $\mathcal{A}_{\text {ENC }}^{\text {sk }}$

$$
m^{\prime}=\operatorname{MSB}(\underbrace{\left[\begin{array}{llll}
c_{0} & 0 & 0 & 0
\end{array}\right]}_{\text {ciphertext }} \underbrace{\left[\begin{array}{l}
s k_{0} \\
s k_{1} \\
s k_{2} \\
s k_{3}
\end{array}\right]}_{\text {secret key }})
$$

Recent SPA against sk:

1. Sparse (invalid) ciphertext \boldsymbol{c}.

What are the potential side-channel attacks ? $\mathcal{A}_{\text {ENC }}^{\text {sk }}$

$$
\begin{aligned}
m^{\prime} & =\operatorname{MSB}(\underbrace{\left[\begin{array}{clll}
c_{0} & 0 & 0 & 0
\end{array}\right]}_{\text {ciphertext }} \underbrace{\left[\begin{array}{l}
s k_{0} \\
s k_{1} \\
s k_{2} \\
s k_{3}
\end{array}\right]}_{\text {secret key }}) \\
& =\operatorname{MSB}\left(c_{0} \cdot s k_{0}\right)=\{0,1\}
\end{aligned}
$$

Recent SPA against sk:

1. Sparse (invalid) ciphertext \boldsymbol{c}.

What are the potential side-channel attacks ? $\mathcal{A}_{\text {ENC }}^{\text {sk }}$

$$
m^{\prime}=\operatorname{MSB}(\underbrace{\left[\begin{array}{cccc}
c_{0} & 0 & 0 & 0
\end{array}\right]}_{\text {ciphertext }} \underbrace{\left[\begin{array}{l}
s k_{0} \\
s k_{1} \\
s k_{2} \\
s k_{3}
\end{array}\right]}_{\text {secret key }})
$$

Recent SPA against sk:

1. Sparse (invalid) ciphertext \boldsymbol{c}.
2. Collect leakage L on m^{\prime} :

$$
=M S B\left(c_{0} \cdot s k_{0}\right)=\{0,1\}
$$

- Many operations depend of a single bit in m^{\prime}.

CCAKEM.Dec re-encrypt the bit m':

What are the potential side-channel attacks ? $\mathcal{A}_{\text {ENC }}^{\text {sk }}$

$$
\begin{aligned}
m^{\prime} & =\operatorname{MSB}(\underbrace{\left[\begin{array}{cccc}
c_{0} & 0 & 0 & 0
\end{array}\right]}_{\text {ciphertext }} \underbrace{\left[\begin{array}{l}
s k_{0} \\
s k_{1} \\
s k_{2} \\
s k_{3}
\end{array}\right]}_{\text {secret key }}) \\
& =\operatorname{MSB}\left(c_{0} \cdot s k_{0}\right)=\{0,1\}
\end{aligned}
$$

Recent SPA against sk:

1. Sparse (invalid) ciphertext \boldsymbol{c}.
2. Collect leakage L on m^{\prime} :

- Many operations depend of a single bit in m^{\prime}.

3. Update guess of $s k_{0}$.

CCAKEM.Dec re-encrypt the bit m':

What are the potential side-channel attacks ? $\mathcal{A}_{\text {ENC }}^{\text {sk }}$

$$
\begin{aligned}
m^{\prime} & =\operatorname{MSB}(\underbrace{\left[\begin{array}{cccc}
c_{0} & 0 & 0 & 0
\end{array}\right]}_{\text {ciphertext }} \underbrace{\left[\begin{array}{l}
s k_{0} \\
s k_{1} \\
s k_{2} \\
s k_{3}
\end{array}\right]}_{\text {secret key }}) \\
& =\operatorname{MSB}\left(c_{0} \cdot s k_{0}\right)=\{0,1\}
\end{aligned}
$$

CCAKEM.Dec re-encrypt the bit m':

What are the potential side-channel attacks ? $\mathcal{A}_{\text {ENC }}^{\text {sk }}$

$$
\begin{aligned}
m^{\prime} & =\operatorname{MSB}(\underbrace{\left[\begin{array}{cccc}
c_{0} & 0 & 0 & 0
\end{array}\right]}_{\text {ciphertext }} \underbrace{\left[\begin{array}{l}
s k_{0} \\
s k_{1} \\
s k_{2} \\
s k_{3}
\end{array}\right]}_{\text {secret key }}) \\
& =\operatorname{MSB}\left(c_{0} \cdot s k_{0}\right)=\{0,1\}
\end{aligned}
$$

CCAKEM.Dec re-encrypt the bit m':

Recent SPA against sk:

1. Sparse (invalid) ciphertext \boldsymbol{c}.
2. Collect leakage L on m^{\prime} :

- Many operations depend of a single bit in m^{\prime}.

3. Update guess of $s k_{0}$.
4. Repeat to improve guess on $s k_{0}$.
5. Repeat for another $s k_{i}$.
\rightarrow One pair (c, L) improves guess on one $s k_{i}$.

What are the potential side-channel attacks ? $\mathcal{A}_{\text {ENC }}^{\text {sk }}$

$$
\begin{aligned}
m^{\prime} & =\operatorname{MSB}(\underbrace{\left[\begin{array}{llll}
c_{0} & 0 & 0 & 0
\end{array}\right]}_{\text {ciphertext }} \underbrace{\left[\begin{array}{l}
s k_{0} \\
s k_{1} \\
s k_{2} \\
s k_{3}
\end{array}\right]}_{\text {secret key }}) \\
& =\operatorname{MSB}\left(c_{0} \cdot s k_{0}\right)=\{0,1\}
\end{aligned}
$$

CCAKEM.Dec re-encrypt the bit m':

Recent SPA against sk:

1. Sparse (invalid) ciphertext \boldsymbol{c}.
2. Collect leakage L on m^{\prime} :

- Many operations depend of a single bit in m^{\prime}.

3. Update guess of $s k_{0}$.
4. Repeat to improve guess on $s k_{0}$.
5. Repeat for another $s k_{i}$.
\rightarrow One pair (c, L) improves guess on one $s k_{i}$.
\rightarrow CCA attack on CPA-secure PKE thanks to leakage.

Summary so far

Summary so far

Attacks:

- $\mathcal{A}_{\mathrm{DEC}}^{\text {sk }}$: Standard DPA recovering all $s k_{i}$ in parallel.
- $\mathcal{A}_{\text {ENC }}^{\text {sk }}$: CCA attack exploiting leakage to observe output of CPA-secure PKE.

Summary so far

Attacks:

- $\mathcal{A}_{\mathrm{DEC}}^{s k}$: Standard DPA recovering all $s k_{i}$ in parallel.
- $\mathcal{A}_{\text {ENC }}^{\text {sk }}$: CCA attack exploiting leakage to observe output of CPA-secure PKE.

Questions ?

- How does FO-transform impact the cost of SCA-secure implementations:
- CPAPKE.Enc is more costly to protect.
- CPAPKE.Enc generates many leakages on a single bit.

Summary so far

Attacks:

- $\mathcal{A}_{\mathrm{DEC}}^{s k}$: Standard DPA recovering all $s k_{i}$ in parallel.
- $\mathcal{A}_{\text {ENC }}^{\text {sk }}$: CCA attack exploiting leakage to observe output of CPA-secure PKE.

Questions ?

- How does FO-transform impact the cost of SCA-secure implementations:
- CPAPKE.Enc is more costly to protect.
- CPAPKE.Enc generates many leakages on a single bit.
- Interesting to use different protection for CPAPKE.Enc and CPAPKE.Dec ?

Summary so far

Attacks:

- $\mathcal{A}_{\mathrm{DEC}}^{s k}$: Standard DPA recovering all $s k_{i}$ in parallel.
- $\mathcal{A}_{\text {ENC }}^{\text {sk }}$: CCA attack exploiting leakage to observe output of CPA-secure PKE.

Questions ?

- How does FO-transform impact the cost of SCA-secure implementations:
- CPAPKE.Enc is more costly to protect.
- CPAPKE.Enc generates many leakages on a single bit.
- Interesting to use different protection for CPAPKE.Enc and CPAPKE.Dec ?
- What is the room to alternative to the FO-transform ?

Methodology

Methodology

How do we proceed:

- Model SCA attacks with information theoretic metrics.
- Model cost with paper \& pencil approximations.
- Compare the impact of attacks on security of designs.

Methodology

How do we proceed:

- Model SCA attacks with information theoretic metrics.
- Model cost with paper \& pencil approximations.
- Compare the impact of attacks on security of designs.

Pro \& cons:

+ Easy and fast way to explore the design space.
- Model / approximatereal attacks.

Methodology

How do we proceed:

- Model SCA attacks with information theoretic metrics.
- Model cost with paper \& pencil approximations.
- Compare the impact of attacks on security of designs.

Pro \& cons:

+ Easy and fast way to explore the design space.
- Model / approximatereal attacks.
\rightarrow We provide trends and not exact numbers.

Content

Introduction

Modeling Security

Modeling Performance
Trends in Perf. vs. Security
Take Home Message

How to model attacks?

Attack complexity

A few parameters:
N Data complexity of the attack.

How to model attacks ?

Attack complexity

A few parameters:
N Data complexity of the attack.
λ Platform dependent parameter (inverse of noise).

How to model attacks ?

A few parameters:
N Data complexity of the attack.
λ Platform dependent parameter (inverse of noise).
d Number of shares used in the implementations.

How to model attacks ?

A few parameters:
N Data complexity of the attack.
λ Platform dependent parameter (inverse of noise).
d Number of shares used in the implementations.
α Constant factor related to the attack methodology.

How to model attacks?

A few parameters:
N Data complexity of the attack.
λ Platform dependent parameter (inverse of noise).
d Number of shares used in the implementations.
α Constant factor related to the attack methodology.

\rightarrow For each attacks, we will evaluate α^{2}.

[^5]Attacks against CPAPKE.Dec $\left(\mathcal{A}_{\mathrm{DEC}}^{\text {sk }}\right)$ Attacks against CPAPKE.Enc $\left(\mathcal{A}_{\text {ENC }}^{\text {sk }}\right)$

Modeling $\mathcal{A}_{\mathrm{ENC}}^{\text {sk }}$ and $\mathcal{A}_{\mathrm{DEC}}^{\text {sk }}$

Attacks against CPAPKE.Dec $\left(\mathcal{A}_{\mathrm{DEC}}^{\text {sk }}\right)$ $\mathcal{A}_{\mathrm{DEC}}^{\text {sk }}$ can:

- Attack all the sk coefficients in parallel.
- Exploit few leakages in CPAPKE.Dec.

Attacks against CPAPKE.Enc $\left(\mathcal{A}_{\text {ENC }}^{\text {sk }}\right)$

Modeling $\mathcal{A}_{\mathrm{ENC}}^{\text {sk }}$ and $\mathcal{A}_{\mathrm{DEC}}^{\text {sk }}$

Attacks against CPAPKE.Dec $\left(\mathcal{A}_{\mathrm{DEC}}^{\text {sk }}\right)$ $\mathcal{A}_{\mathrm{DEC}}^{\text {sk }}$ can:

- Attack all the sk coefficients in parallel.
- Exploit few leakages in CPAPKE.Dec.

For Kyber768:

$$
\alpha_{D e c} \approx 2
$$

Attacks against CPAPKE.Enc $\left(\mathcal{A}_{\text {ENC }}^{\text {sk }}\right)$

Modeling $\mathcal{A}_{\text {ENC }}^{\text {sk }}$ and $\mathcal{A}_{\mathrm{DEC}}^{\text {sk }}$

Attacks against CPAPKE.Dec $\left(\mathcal{A}_{\mathrm{DEC}}^{s k}\right)$

 $\mathcal{A}_{\mathrm{DEC}}^{\text {sk }}$ can:- Attack all the sk coefficients in parallel.
- Exploit few leakages in CPAPKE.Dec.

For Kyber768:

$$
\alpha_{D e c} \approx 2
$$

Attacks against CPAPKE.Enc ($\mathcal{A}_{\text {ENC }}^{s k}$)

$\mathcal{A}_{\text {ENC }}^{\text {sk }}$ can:

- Recover all different $s k_{i}$ sequentially.
- Exploit all leakages in CPAPKE.Enc.

Modeling $\mathcal{A}_{\mathrm{ENC}}^{\text {sk }}$ and $\mathcal{A}_{\mathrm{DEC}}^{\text {sk }}$

Attacks against CPAPKE.Dec $\left(\mathcal{A}_{\mathrm{DEC}}^{\text {sk }}\right)$ $\mathcal{A}_{\mathrm{DEC}}^{\text {sk }}$ can:
 - Attack all the sk coefficients in parallel.
 - Exploit few leakages in CPAPKE.Dec.

For Kyber768:

$$
\alpha_{D e c} \approx 2
$$

Attacks against CPAPKE.Enc $\left(\mathcal{A}_{\text {ENC }}^{s k}\right)$

$\mathcal{A}_{\text {ENC }}^{\text {sk }}$ can:

- Recover all different $s k_{i}$ sequentially.
- Exploit all leakages in CPAPKE.Enc.

For Kyber768:

$$
\alpha_{E n c} \approx 1 / 50
$$

Comparing attacks for unprotected implem. $(d=1)$

Comparing attack complexities N :

Comparing attacks for unprotected implem. $(d=1)$

Attack complexity Attack factor
Comparing attack complexities N :

Comparing attacks for unprotected implem. $(d=1)$

Attack complexity Attack factor
Comparing attack complexities N :

Comparing attacks for unprotected implem. $(d=1)$

Comparing attack complexities N :

- Noise increase (smaller λ) means harder attack.

Comparing attacks for unprotected implem. $(d=1)$

Comparing attack complexities N :

- Noise increase (smaller λ) means harder attack.
- $\mathcal{A}_{\mathrm{ENC}}^{\text {sk }}$ saturates for large λ.

Comparing attacks for unprotected implem. $(d=1)$

Comparing attack complexities N :

- Noise increase (smaller λ) means harder attack.
- $\mathcal{A}_{\mathrm{ENC}}^{\text {sk }}$ saturates for large λ.
- $\mathcal{A}_{\mathrm{ENC}}^{\text {sk }}$ more efficient than $\mathcal{A}_{\mathrm{DEC}}^{\text {sk }}$ by a factor ≈ 100.

Content

Introduction

Modeling Security

Modeling Performance

Trends in Perf. vs. Security

Take Home Message

Modeling CPAPKE.Dec and CPAPKE.Enc costs (1)

Cost of CPAPKE.Dec

Cost of CPAPKE.Enc

Modeling CPAPKE.Dec and CPAPKE.Enc costs (1)

Cost of CPAPKE.Dec

Masking involves:

- Arithmetic masking for lattice operations.
- Boolean masking for polynomial compressions.

Modeling CPAPKE.Dec and CPAPKE.Enc costs (1)

Cost of CPAPKE.Dec

Cost of CPAPKE.Enc
Masking involves:

- Arithmetic masking for lattice operations.
- Boolean masking for polynomial compressions.
\rightarrow Arithmetic to Boolean conversions (hence quadratic overheads):

$$
\zeta_{E n c}=\beta_{E n c} \cdot d_{E n c}^{2}
$$

Modeling CPAPKE.Dec and CPAPKE.Enc costs (1)

Cost of CPAPKE.Dec

Masking involves:

- Arithmetic masking for lattice operations.
- Boolean masking for polynomial compressions.
\rightarrow Arithmetic to Boolean conversions (hence quadratic overheads):

$$
\zeta_{E n c}=\beta_{E n c} \cdot d_{E n c}^{2}
$$

Cost of CPAPKE.Enc

Masking involves:

- Arithmetic masking for lattice arithmetic.
- Boolean masking for polynomial comparison.
- Masked hash functions

Modeling CPAPKE.Dec and CPAPKE.Enc costs (1)

Cost of CPAPKE.Dec

Masking involves:

- Arithmetic masking for lattice operations.
- Boolean masking for polynomial compressions.
\rightarrow Arithmetic to Boolean conversions (hence quadratic overheads):

$$
\zeta_{E n c}=\beta_{E n c} \cdot d_{E n c}^{2}
$$

Cost of CPAPKE.Enc

Masking involves:

- Arithmetic masking for lattice arithmetic.
- Boolean masking for polynomial comparison.
- Masked hash functions
\rightarrow Various masking conversions required (hence quadratic overheads):

$$
\zeta_{D e c}=\beta_{D e c} \cdot d_{D e c}^{2}
$$

Modeling CPAPKE.Dec and CPAPKE.Enc costs (2)

$$
\frac{\beta_{E n c}}{\beta_{D e c}}
$$

${ }^{3}$ Bos et al. "Masking Kyber: First- and Higher-Order Implementations". In: TCHES 2021 ().
${ }^{4}$ Bronchain and Cassiers. "Bitslicing Arithmetic/Boolean Masking Conversions for Fun and Profit with Application to Lattice-Based KEMs". In: eprint 2022/158 ().

Modeling CPAPKE.Dec and CPAPKE.Enc costs (2)

Software implementation of Kyber768 from ${ }^{3}$:

Operation	Number of shares					
	2	3	4	5	6	7
crypto_kem_dec	3178	57141	97294	174220	258437	350529
indcpa_dec	200	4203	7047	13542	20323	27230
indcpa_enc	2024	18879	32594	53298	75692	104191
comparison	693	32293	54725	102922	156075	210518

$$
\frac{\beta_{E n c}}{\beta_{D e c}}
$$

${ }^{3}$ Bos et al. "Masking Kyber: First- and Higher-Order Implementations". In: TCHES 2021 ().
${ }^{4}$ Bronchain and Cassiers. "Bitslicing Arithmetic/Boolean Masking Conversions for Fun and Profit with Application to Lattice-Based KEMs". In: eprint 2022/158 ().

Modeling CPAPKE.Dec and CPAPKE.Enc costs (2)

${ }^{3}$ Bos et al. "Masking Kyber: First- and Higher-Order Implementations". In: TCHES 2021 ().
${ }^{4}$ Bronchain and Cassiers. "Bitslicing Arithmetic/Boolean Masking Conversions for Fun and Profit with Application to Lattice-Based KEMs". In: eprint 2022/158 ().

Modeling CPAPKE.Dec and CPAPKE.Enc costs (2)

Software implementation of Kyber768 from ${ }^{3}$:

Operation	Number of shares						$\frac{\beta_{E n c}}{\beta_{D e}} \approx \frac{(104,191+210,518)}{(27,230)}$	
	2	3	4	5	6	7		
crypto_kem_dec	3178	57141	97294	174220	258437	350529		
indcpa_dec	200	4203	7047	13542	20323	27230	$\overline{\beta_{\text {Dec }}}$	$(27,230)$
indcpa_enc	2024	18879	32594	53298	75692	104191		
comparison	693	32293	54725	102922	156075	210518		11.63

Caution: Numbers can change between implementations:

- $\beta_{\text {Enc }} / \beta_{\text {Dec }} \approx 40$ with numbers from ${ }^{4}$

[^6]
Content

Introduction

Modeling Security

Modeling Performance

Trends in Perf. vs. Security

Take Home Message

What is the impact of attacks on costs?

1. How many of shares to secure Enc \& Dec:

What is the impact of attacks on costs?

1. How many of shares to secure Enc \& Dec:

We fix:
γ : target security.
λ : platform dependent parameter.
α : attack parameter.

What is the impact of attacks on costs?

1. How many of shares to secure Enc \& Dec:

We fix:
γ : target security.
λ : platform dependent parameter.
α : attack parameter.

We derive the number of shares $d_{\text {Enc }}$ and $d_{D e c}$:

$$
\gamma \geq \frac{\alpha}{\lambda^{d}}
$$

What is the impact of attacks on costs?

1. How many of shares to secure Enc \& Dec:

We fix:
γ : target security.
λ : platform dependent parameter.
α : attack parameter.
2. Compare the costs to secure Enc \& Dec:

We derive the number of shares $d_{\text {Enc }}$ and $d_{\text {Dec }}$:

$$
\gamma \geq \frac{\alpha}{\lambda^{d}}
$$

What is the impact of attacks on costs?

1. How many of shares to secure Enc \& Dec:

We fix:
γ : target security.
λ : platform dependent parameter.
α : attack parameter.
We derive the number of shares $d_{\text {Enc }}$ and $d_{D e c}$:

$$
\gamma \geq \frac{\alpha}{\lambda^{d}}
$$

2. Compare the costs to secure Enc \& Dec:

- For a fixed set of parameters $(\gamma, \lambda, \alpha)$.
- What is the time spent in securing CPAPKE.Enc \& CPAPKE.Dec

What is the impact of attacks on costs?

1. How many of shares to secure Enc \& Dec:

We fix:
γ : target security.
λ : platform dependent parameter.
α : attack parameter.
We derive the number of shares $d_{\text {Enc }}$ and $d_{D e c}$:

$$
\gamma \geq \frac{\alpha}{\lambda^{d}}
$$

2. Compare the costs to secure Enc \& Dec:

- For a fixed set of parameters $(\gamma, \lambda, \alpha)$.
- What is the time spent in securing CPAPKE.Enc \& CPAPKE.Dec

We use the ratio:

$$
\frac{\zeta_{E n c}}{\zeta_{D e c}}=\frac{\beta_{E n c} \cdot d_{E n c}^{2}}{\beta_{E n c} \cdot d_{E n c}^{2}}
$$

How many of shares to secure Enc \& Dec:

How many of shares to secure Enc \& Dec:

More shares for:

- More security γ.

How many of shares to secure Enc \& Dec:

More shares for:

- More security γ.

$$
d \geq \frac{\log (\alpha)-\log (\gamma)}{\log (\lambda)}
$$

- More efficient attacks α.
\rightarrow constant absolute difference between $d_{E n c}$ and $d_{D e c}$.

How many of shares to secure Enc \& Dec:

More shares for:

- More security γ.

$$
d \geq \frac{\log (\alpha)-\log (\gamma)}{\log (\lambda)}
$$

- More efficient attacks α.
- Less noise λ.
\rightarrow constant absolute difference between $d_{E n c}$ and $d_{D e c}$.

How many of shares to secure Enc \& Dec:

More shares for:

- More security γ.

$$
d \geq \frac{\log (\alpha)-\log (\gamma)}{\log (\lambda)}
$$

- More efficient attacks α.
- Less noise λ.
\rightarrow constant absolute difference between $d_{E n c}$ and $d_{D e c}$.

Relative difference between $d_{E n c}$ and $d_{\text {Dec }}$:

How many of shares to secure Enc \& Dec:

More shares for:

- More security γ.

$$
d \geq \frac{\log (\alpha)-\log (\gamma)}{\log (\lambda)}
$$

- More efficient attacks α.
- Less noise λ.
\rightarrow constant absolute difference between $d_{E n c}$ and $d_{D e c}$.

Relative difference between $d_{\text {Enc }}$ and $d_{\text {Dec }}$:

- Small γ : Large d's relative difference.

How many of shares to secure Enc \& Dec:

More shares for:

- More security γ.

$$
d \geq \frac{\log (\alpha)-\log (\gamma)}{\log (\lambda)}
$$

- More efficient attacks α.
- Less noise λ.
\rightarrow constant absolute difference between $d_{\text {Enc }}$ and $d_{\text {Dec }}$.

Relative difference between $d_{E n c}$ and $d_{D e c}$:

- Small γ : Large d's relative difference.
- Large γ : Small d's relative difference.

Compare the costs to secure Enc \& Dec

Observations:

Compare the costs to secure Enc \& Dec

Observations:

Compare the costs to secure Enc \& Dec

Observations:

- Small γ : Large d's relative difference.
- Enc dominates largely the cost due to larger $d_{\text {Enc }}$.
- Incentive to get rid of FO-transform.

Compare the costs to secure Enc \& Dec

Observations:

- Small γ : Large d's relative difference.
- Enc dominates largely the cost due to larger $d_{\text {Enc }}$.
- Incentive to get rid of FO-transform.
- Large γ : small d's relative difference.
- Enc dominates less the cost.
- Alternatives should be more efficient than $\frac{\beta_{\text {Enc }}}{\beta_{\text {Dec }}}$.

Compare the costs to secure Enc \& Dec

Observations:

- Small γ : Large d's relative difference.
- Enc dominates largely the cost due to larger $d_{\text {Enc }}$.
- Incentive to get rid of FO-transform.
- Large γ : small d's relative difference.
- Enc dominates less the cost.
- Alternatives should be more efficient than $\frac{\beta-n c}{\beta_{\text {Dec }}}$. \rightarrow Same holds for more efficient $\mathcal{A}_{\text {ENC }}^{\text {sk }}$.

Content

Introduction

Modeling Security

Modeling Performance
Trends in Perf. vs. Security
Take Home Message

Take home message

Future for SCA and PQ KEMs:

Take home message

Future for SCA and PQ KEMs:

- FO-transform leads to easy-to-mount attacks exploiting re-encryption.

Take home message

Future for SCA and PQ KEMs:

- FO-transform leads to easy-to-mount attacks exploiting re-encryption.
- Re-encryption dominates the cycle count because:
- More computations.
- More shares to compensate attacks.

Take home message

Future for SCA and PQ KEMs:

- FO-transform leads to easy-to-mount attacks exploiting re-encryption.
- Re-encryption dominates the cycle count because:
- More computations.
- More shares to compensate attacks.
- Its proportion decreases with target security.

Take home message

Future for SCA and PQ KEMs:

- FO-transform leads to easy-to-mount attacks exploiting re-encryption.
- Re-encryption dominates the cycle count because:
- More computations.
- More shares to compensate attacks.
- Its proportion decreases with target security.

Thanks!
 @BronchainO

[^0]: $1_{\text {https://www.ssi.gouv.fr/publication/anssi-views-on-the-post-quantum-cryptography-transition/ }}$

[^1]: $1_{\text {https://www.ssi.gouv.fr/publication/anssi-views-on-the-post-quantum-cryptography-transition/ }}$

[^2]: ${ }^{1}$ https://www.ssi.gouv.fr/publication/anssi-views-on-the-post-quantum-cryptography-transition/

[^3]: $1_{\text {https://www.ssi.gouv.fr/publication/anssi-views-on-the-post-quantum-cryptography-transition/ }}$

[^4]: $1_{\text {https://www.ssi.gouv.fr/publication/anssi-views-on-the-post-quantum-cryptography-transition/ }}$

[^5]: ${ }^{2}$ See full paper for more detailed attack modeling.

[^6]: ${ }^{3}$ Bos et al. "Masking Kyber: First- and Higher-Order Implementations". In: TCHES 2021 ().
 ${ }^{4}$ Bronchain and Cassiers. "Bitslicing Arithmetic/Boolean Masking Conversions for Fun and Profit with Application to Lattice-Based KEMs". In: eprint 2022/158 ().

